

JULY 1994

Registered in U.S. Patent and Trademark Office; Copyright 1994 by the American Chemical Society

Chemical Transformations and Disproportionation of Sulfur **Dioxide on Transition Metal Complexes**

GREGORY J. KUBAS

Los Alamos National Laboratory, Inorganic and Structural Chemistry Group (CST-3), MS-C346, Los Alamos, New Mexico 87545

Received January 25, 1994

Aside from its renown as a source of acid precipitation, sulfur dioxide is remarkable in possessing physicochemical and coordination properties that are more diverse than those of any other small molecule. SO_2 is amphoteric, behaving as a Lewis acid or base, mild oxidant or reductant, or oxygen donor or acceptor. It is an excellent nonaqueous solvent¹ when liquefied at -10 °C and coordinates to many types of compounds, including metal complexes at both metal and ligand sites, strong Lewis acids, and virtually all nucleophiles, even halide ion (Figure 1). SO_2 can bind strongly to low-valent metals like CO or NO or completely reversibly like O_2 or H_2 . The diversity of metal-SO₂ bonding geometries is unmatched and has been reviewed by us and others.²

This Account will focus on the *reactivity* of SO₂, e.g., S=O bond cleavage, some of which has been reviewed² but not in depth. We have been developing homogeneous catalytic processes for reducing SO₂ to sulfur to address the problem of SO₂ abatement. In our studies, SO₂ has revealed surprisingly facile oxygen transfer and disproportionation reactions that may be central to its chemistry and valuable for SO₂ conversion to useful/ innocuous species. The richness of SO_2 chemistry has recently dramatically increased, and it appears that any transformation imaginable is possible. Although

Gregory Kubas was born in Cleveland, OH, in 1945. He obtained his B.S. in chemistry at Case-Western Reserve University and Ph.D. from Northwestern University under Duward Shriver. After postdoctoral positions at Princeton with Thomas Spiro and at Los Alamos, he joined the staff at Los Alamos National Laboratory in 1974. He was appointed a Laboratory Fellow in 1987 and was the recipient of the 1993 American Chemical Society Award in Inorganic Chemistry for his discovery of metal-dihydrogen coordination. His research includes binding and reactions of environmentally related and energy-related small molecules such as SO2 and H2 on metal complexes, particularly group 6 metals and sulfide clusters, as well as studies of metal σ-bond coordination.

IS THE MOST VERSATILE LIGAND/COMPLEXING AGENT KNOWN: 'n ELECTROPHILE NUCLEOPHILE **π-LIGAND OR BRIDGING** pyramidal plana M-LODS02 L = ligand X-302 SO2 F.SbCOO X = halide ≈s ll O R₃N COSO₂ organic bases

Figure 1. Coordination modes and geometries for SO₂.

mechanistic studies of SO_2 reactions have been sparse, we have now begun to identify likely intermediates and pathways in SO_2 reduction and disproportionation.

Insertion-Type Reactions of SO₂ and, Conversely, Attack at Bound SO₂

Historically, the first well-studied SO₂ reactions were insertion into M-C³ and M-O:^{4,5}

$$\mathbf{M} - \mathbf{c}' - \frac{\mathbf{SO}_2}{\mathbf{O}_2} + \mathbf{M} - \mathbf{S}_0 - \mathbf{c}' - \mathbf{C}'$$
(1)

$$\mathsf{M} \underbrace{\begin{smallmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{smallmatrix}}_{\mathbf{0} \xrightarrow{\mathbf{0}}} \mathsf{M} \underbrace{\begin{smallmatrix} \mathbf{0} \\ \mathbf$$

M-C insertion has been reviewed³ and will not be © 1994 American Chemical Society

0001-4842/94/0127-0183\$04.50/0

discussed further. The peroxysulfite intermediate in eq 2 was demonstrated by Collman^{4e} by ¹⁸O labeling and was supported theoretically.^{4h} The sulfonate and bidentate^{4d} (η^2) sulfate groups generally could not easily be removed from the metal to regenerate starting complex, a common problem in designing catalytic conversions of SO_2 to, e.g., H_2SO_4 . Little work has been done on reactions of sulfate complexes, but Atwood^{5a} has recently found that η^2 -SO₄ can be displaced from the coordination sphere of an iridium complex by CO. Also, novel reversible addition of SO₂ across cis-oxo bonds in $L_3Tc(=0)_3$ to give $L_3Tc(=0)(\eta^2-SO_4)$ has now been observed. 5b Insertions of SO_2 into the M-SO bond in $Pd(PPh_3)_2(SO)$ to give S.O-bound thiosulfate⁶ and into other metal-ligand bonds (M-OR, M-H) or internal ligand bonds7 have been found, as discussed below.

The converse reaction of $M-SO_2$ with O_2 or SO^6 also forms η^2 -SO₄ or -S₂O₃ complexes.^{4a-d,8-10} We identified at least two mechanisms by ¹⁸O labeling: initial replacement of SO_2 in $Pt(SO_2)(PCy_3)_2$ by O_2 ,⁹ followed by insertion as in eq 2, or attack of O_2 on sulfur in $Rh(NO)(\eta^2-SO_2)(PPh_3)_2$ to form a Rh-SO₄ intermediate with square-pyramidal sulfur:¹⁰

$$\mathsf{Rh} \begin{pmatrix} \mathsf{O} \\ \mathsf{S}_{\mathsf{N}} \\ \mathsf{O} \end{pmatrix} \xrightarrow{\mathsf{18}}_{\mathsf{O}} \xrightarrow{\mathsf{O}}_{\mathsf{18}} \xrightarrow{\mathsf{O}}_{\mathsf{O}} \xrightarrow{\mathsf{O}} \xrightarrow{\mathsf{O}} \xrightarrow{\mathsf{O}}_{\mathsf{O}} \xrightarrow{\mathsf{O}} \xrightarrow$$

Shift of Rh to the equivalent basal edges gave the expected 1:2:1 ratio of isotopomers. The former mechanism is generally more likely since usually complexes with labile M-SO₂ form sulfates^{2d} and some sulfates are accessible from either $M-O_2$ or $M-SO_2$.^{4a-d,9}

Complexes with M=0 bonds insert SO_2 to form

Chem. Rev. A 1970, 5, 281. (4) (a) Cook, C. D., Jauhal, G. S. J. Am. Chem. Soc. 1967, 89, 3066. (b)

 (4) (a) Cook, C. D., Jadniai, G. J. Am. Chem. Chem. Soc. 150, 195, 3000.
 (b) Levison, J. J.; Robinson, S. D. Inorg. Nucl. Chem. Lett. 1968, 4, 407; J.
 Chem. Soc. A 1971, 762. (c) Valentine, J.; Valentine, D., Jr.; Collman,
 J. P. Inorg. Chem. 1971, 10, 219. (d) Reed, J.; Soled, S. L.; Eisenberg,
 R. Ibid. 1970, 9, 2367. (f) Laing, K. R.; Roper, W. R. J. Chem. Soc. A 1969,
 A. 1964, 25, 2549. 1889. (g) Miksztal, A. R.; Valentine, J. S. Inorg. Chem. 1984, 25, 3548. (h) Mehandru, S. P.; Anderson, A. B. *Ibid.* 1985, 24, 2570.
 (5) (a) Randall, S. L.; Thompson, J. S.; Buttrey, L. A.; Ziller, J. W.;

Churchill, M. R.; Atwood, J. D. Organometallics 1991, 10, 683. (b) Cook, J. A.; Davis, W. M.; Davison, A.; Jones, A. G.; Nicholson, T. L.; Simpson, R. D. Abstracts of Papers, 207th National Meeting of the American Chemical Society, San Diego, CA, March 1994; American Chemical Society: Washington, DC, 1994; INOR 66. (6) Heyke, O.; Neher, A.; Lorenz, I.-P. Z. Anorg. Allg. Chem. 1992, 608,

23.

(7) Schenk, W. A.; Pfeffermann, J. J. Organomet. Chem. 1992, 440, 341.

(8) Some other examples: (a) Stiddard, M. H. B.; Townsend, R. E. J. Chem. Soc., Chem. Commun. 1969, 1372; 1970, 2719. (b) Levison, J. J.; Robinson, S. D. J. Chem. Soc., Dalton Trans. 1972, 2013. (c) Bhaduri, S.; Johnson, B. F. G.; Khair, A.; *Dation Trans.* 1972, 2015. (c) Bhaduri,
 S.; Johnson, B. F. G.; Khair, A.; Ghatak, I.; Mingos, D. M. P. *Ibid.* 1980,
 1572. (d) Ryan, R. R.; Kubas, G. J. *Inorg. Chem.* 1978, 17,637. (e) Moody,
 D. C.; Ryan, R. R. Cryst. Struct. Commun. 1976, 5, 145. (f) Fettinger,
 J. C.; Churchill, M. R.; Bernard, K. A.; Atwood, J. D. J. Organomet. Chem. 1988, 340, 377. (g) Reynolds, M. S.; Holm, R. H. Inorg. Chim. Acta 1989, 155, 113.

(9) Ritchey, J. M.; Moody, D. C.; Ryan, R. R. Inorg. Chem. 1983, 22, 2276

(6)

bidentate sulfites.^{11,12} Reaction of $(tmtaa)Ti(n^2-SO_3)$ (tmtaa = 7, 16 - dihydro - 6, 8, 15, 17 - tetramethyldibenzo-[b,i][1,4,8,11]tetraazacyclotetradecine dianion) with NH₄OH regenerated (tmtaa)Ti=O plus [NH₄]₂SO₃, suggesting that M=O compounds could be useful as reusable SO₂ scavengers.¹¹ Farrar found a novel sulfite bridge formed from oxidation of μ -SO₂:¹³

$$L \operatorname{Pt} \xrightarrow{SO_2}_{\substack{0 \\ | \\ 0 \\ S = 0}} \operatorname{Pt} L \xrightarrow{O_2}_{\substack{0 \\ CHCI_3}} L \operatorname{Pt} \xrightarrow{SO_2}_{\substack{0 \\ | \\ 0 \\ S = 0}} \operatorname{Pt} L$$

Other examples of electrophilic and nucleophilic attack at metal-bound SO₂ are known,^{2c,14} e.g., silvlation at oxygen of $Mo(CO)_3(PR_3)_2(\eta^1-SO_2)$ to give S-bound $O = S - OSiMe_3$ and alkylation at sulfur by LiR or ZnR_2 to give M—SO₂R.^{14b} CH₂N₂ converts [CpRu(Ph₂PCH₂- $PPh_2(SO_2)$]⁺ to a η^2 -sulfene reactive with X = Br⁻, CN-, PR₃, or ROH:^{14c}

$$Ru - S_{0}^{\vee 0} \xrightarrow{CH_{2}N_{2}} Ru < S_{CH_{2}}^{\vee 0} \xrightarrow{X} Ru - S_{0}^{\vee 0} CH_{2}X$$
(5)

Conversely, SO_2 had earlier been found to insert into $M(\mu$ -CH₂)M and M=CH₂ to also form η^2 -CH₂SO₂.^{15,16} The versatility of SO_2 is further highlighted by a remarkable cycloaddition of activated acetylenes across S^{IV} and S^{II} centers:¹⁷

SO₂ Reduction/Disproportionation by **Transition Metal Hydride Complexes**

About 20 years ago Taube¹⁸ found the first example of reduction of metal-bound SO₂ by treating RuCl- $(NH_3)_4(SO_2)^{2+}$ with zinc in aqueous HCl to produce the S₂-bridged dimer [RuCl(NH₃)₄]₂(μ -S₂)⁴⁺. Meyer¹⁹ recently showed stepwise 6e⁻ electrochemical reduction of $Ru(NH_3)_5(SO_2)^{2+}$ to $Ru(NH_3)_5(H_2S)^{2+}$ via the intermediacy of an S_2 dimer. Our initial efforts in SO_2 reactivity focused on its reduction by hydride complexes to devise new synthetic/catalytic methodologies and probe reduction mechanisms. Although H and SO_2 ligands can coexist,^{2b} many hydrides should reduce SO₂.

(11) Housmekerides, C. E.; Ramage, D. L.; Kretz, C. M.; Shontz, J. T.; Pilato, R. S.; Geoffroy, G. L.; Rheingold, A. L.; Haggerty, B. S. Ibid. 1992, 31, 4453.

(12) (a) Kim, Y.; Gallucci, J.; Wojcicki, A. J. Am. Chem. Soc. 1990, 112,
(a) Kim, Y.; Gallucci, J.; Wojcicki, A. J. Am. Chem. Soc. 1990, 112,
(b) Cecconi, F.; Ghilardi, C. A.; Midollini, S.; Moneti, S.; Orlandini,
A. J. Organomet. Chem. 1987, 323, C5.
(13) Farrar, D. H.; Gukathasan, R. R. J. Chem. Soc., Dalton Trans.

1989, 557.

(14) (a) Schenk, W. A.; Baumann, F. E. J. Organomet. Chem. 1984, (1) (a) Schenk, W. A., Badmann, P., Stahrfeldt, T.; Dombrowski, E.
260, C6. (b) Schenk, W. A.; Urban, P.; Stahrfeldt, T.; Dombrowski, E.
Z. Naturforsch., B 1992, 47b, 1493. (c) Schenk, W. A.; Urban, P.;
Dombrowski, E. Chem. Ber. 1993, 126, 679.
(15) Herrmann, W. A.; Bauer, C. Organometallics 1982, 1, 1101.
(16) Roper, W. R.; Waters, J. M.; Wright, A. H. J. Organomet. Chem.

1984, 275, C13. (17) Schenk, W. A.; Dombrowski, E.; Reuther, I.; Stur, T. Z. Natur-

forsch., B 1992, 47b, 732. (18) Brulet, C. R.; Isied, S. S.; Taube, H. J. Am. Chem. Soc. 1973, 95,

4758.

(19) Kline, M. A.; Barley, M. H.; Meyer, T. J. Inorg. Chem. 1987, 26, 2197.

⁽¹⁾ Waddington, T. C. In Non-Aqueous Solvent Systems; Waddington, T. C., Ed.; Academic Press: New York, 1965; Chapter 6.

<sup>T. C., Ed.; Academic Press: New York, 1965; Chapter 6.
(2) (a) Mingos, D. M. P. Transition Met. Chem. (London) 1978, 3, 1.
(b) Ryan, R. R.; Kubas, G. J.; Moody, D. C.; Eller, P. G. Struct. Bonding (Berlin) 1981, 46, 47.
(c) Schenk, W. A. Angew. Chem., Int. Ed. Engl.
1987, 26, 98.
(d) Kubas, G. J. Inorg. Chem. 1979, 18, 182.
(3) (a) Wojcicki, A. Acc. Chem. Res. 1971, 4, 344.
(b) Wojcicki, A. Adv. Organomet. Chem. 1976, 5, 261.</sup>

⁽¹⁰⁾ Moody, D. C.; Ryan, R. R. Ibid. 1977, 16, 2473.

Table 1. IK and Structural Data for Metal-Coordinated Polyoxosulfido Liga

		X-ray distances, Å ^b					
complex	SO frequencies, cm ⁻¹	M-S	M-0	S-S	S=Otc	S-Obd	ref
$\begin{array}{c} CpMo(CO)_3(SO_2H) \\ CpW(CO)_3(SO_2H) \end{array}$	990, 762 970, 760 (937, 732) ¹	2.521(2)			1.515(6)	1.637(6)*	23 23
$Cp*Ru(CO)_2(SO_3H)$ $CpFe(CO)_2(SO_3H)$	1180, 1080, 810 1184, 1084, 811	2.318(2)		,	1.459(3)	1.559(3) ^e	31 32a
$[Ru(bpy)_{2}(py)(SO_{3}H)]^{+}$ Ir(CO)(SO ₂)(PPh ₃) ₂ (SO ₃ H)	1213, ^g 1072, ^h 1053, ^g 918 ^h	2.286(2)			1.467(5)	1.586(5) ^e	33b 25
Fe(TPP)(OSO ₃ H)			1.919(4)		1.446(5)	1.492(4) 1.521(5)e	35
$[CpMoO(S_2)MoO(\eta^2-SO_3)]^-$ $[CpMoO(S_2)MoO(\eta^2-SO_4)]^-$	1166, 646, 571, 502 1307, 1172, 669, 612, 572, 540		$2.077(10)^{i}$ $2.077(10)^{i}$		1.441(9) 1.43(1)	1.586(9) 1.540(6)	67 67
$[CpMoO(S_2)MoO(\eta^2 - S_2O_3)]^{-} Cp_2Mo(\eta^2 - S_2O_3)$	1277, 1172, 1150, 662, 542 1247, 1137, 1128, 652, 545	2.302(6) 2.450(2)	2.077(10) ¹ 2.134(4)	1.991(7) 2.051(2)	1.429(10) 1.448(4)	1.512(11) 1.536(4)	67 21
Ni(tu) ₄ (η^2 -S ₂ O ₃)·H ₂ O [Cp*Ru(CO) ₂] ₂ (μ -S ₂ O ₃)	1152, 1090, 971, 665, 535 1228, 1190, 1045, 1020, 505	2.718(4) 2.395(2)	2.107(9)	2.01(1) 2.135(3)	1.45(1) 1.44(1)	1.50(1)	22a,b 31
$Cp*_{2}Mo_{2}(\mu-S)(\mu-S_{2})(\mu-S_{2}O_{3})$ $Cp*_{2}Cr_{2}(\mu-S)(\mu-S_{2})(\mu-S_{2}O_{3})$	1242, 1205, 1010, 604 1228, 1204, 1012, 610	2.441(3) 2.367(2)		2.166(4) 2.152(2)	1.436(8) 1.441(6)		62 65
$[(S_2)OMOS_2MOO(\eta^2 - S_3O_2)]^{2-y}$ $[Cp*Mo(CO)_3]_2(\mu - S_2O_4)$ $[C=P_1(CO)_3]_2(\mu - S_2O_4)$	1205, 598, 557 1207, 1027	2.417(5) 2.496(1)		2.047(11) 2.266(1)	1.401(15) 1.471(4)		22e 23
$[M(CO)_{2}]_{2}(\mu - S_{2}O_{4})$ $[M(CO)_{5}]_{2}(\mu - S_{2}O_{4}) (M = Mn, Re)$ $CH_{2}[CpRb(C_{2}H_{2})]_{2}(\mu - S_{2}O_{4})$	1223, 1040 1224, 1037; k 1212, 1031 ^{l} 1219, 1051						28a 28a 28c
$Cp*_{2}V(\eta^{2}-[0,0]-S_{2}O_{4})$ $Fe(dieneN_{4})(\eta^{2}-[0,0]-S_{2}O_{4})$	1092, 942, 927		$2.032(3)^m$ $2.173(9)^m$	2.335(2) 2.222(7)	$1.472(4)^m$ $1.37(2)^m$	$1.534(3)^m$ 1.490(8) ^m	29 8g
10(010114)(1/ [0,0]-0200)				(//	2.0. (2)	1.100(0)	9

^a Only representative examples of SO₃, SO₄, and SO₃H ligands are listed. Abbreviations: $Cp = C_5H_5$; $Cp^* = C_5Me_5$; bpy = bipyridine; py = pyridine; TPP = tetraphenylporphyrinate; tu = thiourea; diene N_4 = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene. ^b Unless noted otherwise, average values are given for each bond type. ^c Terminal S= $0.^{d}$ S-O with oxygen bound to another atom. ^e S-OH distance. ^f ¹⁸O isotopomer. ^g SO₂. ^h SO₃H. ⁱ In ref 67, an average M-O distance was given for all three Mo complexes listed here (range: 2.060(7)-2.090(4) Å). ^j η^2 -S₃O₂ = S,S-bound dithiosulfate, η^2 -S₂O₅ = O₂SSO₃ bonded via one oxygen from each sulfur. ^k M = Mn. ⁱ M = Re. ^m Distances are symmetry-related.

However, we and others before were surprised to find that hydrides did not necessarily reduce SO₂ all the way to S⁰ or S²⁻ and sometimes gave S^{VI} products indicative of sulfur oxidation. Several researchers^{2a,20} reported perplexing SO₂ reactivity with $RuH_2(PR_3)_x$ (x = 3, 4) and related Ru species where sulfato complexes, e.g., $Ru(SO_4)(SO_2)(PPh_3)_2(H_2O)$,^{20c} were identified to be among the products. At the time it was not clear whether traces of O_2 or H_2O were involved, and SO_2 disproportionation was proposed.^{20c} Our findings below support this idea, and what has evolved is exceptionally rich SO₂ reactivity involving both insertion and O transfer.

We chose group 6 metals as targets because of their low cost and use in hydrodesulfurization. Two important reactions occurred rapidly in good yield ($M = M_0$, W):

$$Cp_2MH_2 \xrightarrow[toluene]{} Cp_2M \xrightarrow{O}_S \xrightarrow{O}_O + H_2O$$
(7)

$$Cp(CO)_{3}MH \xrightarrow{SO_{2}} Cp(CO)_{3}M-S \xrightarrow{O} OH$$
 (8)

Equation 7 gave quantitative partial reduction to η^2 thiosulfate rather than S_8 or sulfide, even with excess hydride.²¹ As will be further shown, M-S₂O₃²² or similar $M-S_xO_y$ species often form and seem to be thermody-

(20) (a) Eliades, T. I.; Harris, R. O.; Zia, M. C. J. Chem. Soc., Chem. Commun. 1970, 1709. (b) Komiya, S.; Yamamoto, A. Bull. Chem. Soc. Jpn. 1976, 49, 784. (c) Ghatak, I.; Mingos, D. M. P.; Hursthouse, M. B.; (21) Kubas, G. J.; Ryan, R. R. Inorg. Chem. 1984, 23, 3181.
 (22) Other examples of M-S₂O₃: (a) Gasparri, G. F.; Mangia, A.; Musatti, A.; Nardelli, M. Acta Crystallogr. B1969, B25, 203. (b) Newman,

Musatti, A.; Nardeni, M. Acta Crystattogr. B 1995, B20, 203. (b) Newman,
G. A. J. Mol. Struct. 1970, 5, 61. (c) Gabelica, Z. J. Mol. Struct. 1980,
60, 131. (d) Freedman, A. N.; Straughan, B. P. Spectrochim. Acta 1971,
27A, 1455. M-dithiosulfate: (e) Muller, A.; Reinsch-Vogell, U.; Krickmeyer, E.; Bogge, H. Angew. Chem., Int. Ed. Engl. 1982, 21, 796.

namic sinks (Table 1). Like ionic thiosulfates, Cp₂M- (S_2O_3) reacted with strong acids, e.g., HBr, to give SO₂, H_2O , and $Cp_2M(S)(Br)_2$.²¹ Equation 8 (in toluene or Et_2O) demonstrated that SO_2 inserts into M-H bonds as in M-C bonds, except that the hydride attaches to oxygen rather than sulfur as in eq 1 to form the novel SO₂H ligand.²³ This was proven crystallographically (Table 1) and spectroscopically (ν (OH) = 2552 cm⁻¹ in $CpW(CO)_3(SO_2H)$). Equation 8 is also unlike CO_2 insertion into M-H bonds, which gives η^2 -O-bound HCO₂.²⁴ The solid SO₂H complexes are remarkable in that they completely dissociate back to $CpM(CO)_3H$ and SO_2 upon redissolving in the solvents from which they were crystallized. A broad ¹H NMR signal (δ 3.89) for the SO_2H in $Cp*Mo(CO)_3(SO_2H)$ was observable only at -40 °C in liquid SO₂. The ephemeral nature of SO_2H is reiterated by the only recent substantiation²⁵ of the tautomeric equilibrium $IrH(SO_2)(CO)(PR_3)_2 \leftrightarrow$ $Ir(SO_2H)(CO)(PR_3)_2$ proposed^{8b} 22 years ago.

Like RSO₂H, M-SO₂H complexes are thermally unstable toward auto-redox, even in the solid state where $(C_5R_5)M(CO)_3(SO_2H)$ gave a mixture of polynuclear sulfido and oxo-sulfido species in a day at 25 °C (M = Mo; R = H) or on mild heating (M = W).

$$(C_5R_5)M(CO)_3(SO_2H) \rightarrow [(C_5R_5)M(CO)_3]_2 + [(C_5R_5)MS_2O_3]_n + H_2O + CO (9)$$

It is thus possible that SO₂ inserts into the M-H bonds of Cp_2MH_2 as the first step in eq 7, followed by elimination of H_2O to give S_2O_3 . In eq 9, however, a

(23) Kubas, G. J.; Wasserman, H. J.; Ryan, R. R. Organometallics 1985, 4, 419, 2012.

(24) Darensbourg, D. J.; Kudaroski, R. A. Adv. Organomet. Chem. 1983, 22, 129.

(25) Randall, S. L.; Miller, C. A.; Janik, T. S.; Churchill, M. R.; Atwood, J. D. Organometallics 1994, 13, 141.

Figure 2. Structure of $[Cp^*Mo(CO)_3]_2(\mu-S_2O_4)$. Reprinted with permission from ref 23. Copyright 1985 American Chemical Society.

thiosulfate was not formed despite large variation in product composition depending on M and R. $[(C_5R_5)-MO(\mu-S)]_2$ always formed, showing that total reduction of S^{IV} to S^{II-} can occur even in the solid. Prolonged solution reactions of the W hydrides with SO₂ in 4:1 ratio gave CO-containing sulfides such as $[Cp*W(CO)_2-(\mu-S\cdotSO_2)]_2$,²³ further illustrating the diversity of pathways. Tight binding of SO₂ to μ -S apparently stabilized the latter since attempts to remove SO₂ thermally gave decomposition. Ligand-SO₂ binding is normally reversible, e.g., in L_nCu^I(SR•SO₂), which can form a basis for SO₂ sensors.²⁷

At -20 °C in SO₂-saturated CH₃CN, Cp*Mo(CO)₃H unexpectedly gave instead of the SO₂H complex a 31 % yield of a dithionite-bridged complex (protons eliminated as water). [Cp*Mo(CO)₃]₂(S₂O₄) (Figure 2) is the first example of S-bound S₂O₄²⁻ and a rare case of C_{2h} S₂O₄.²³ The S–S distance (2.266 Å) is shorter than in Na₂S₂O₄ and other C_{2v} S₂O₄²⁻ ions (2.35–2.39 Å).²⁸ The dithionite is solution unstable, giving the same oxo–sulfido clusters as from Cp*Mo(CO)₃H–SO₂ reaction. Reaction of SO₂ with Na[Cp*M(CO)₃]₂ also gave the dithionite in 31% yield (plus Na₂S₂O₄), analogous to an iron system^{28a,b} for which a mechanism involving coupling of M(SO₂)• radicals was proposed. We subsequently found that O-bonded dithionite can be produced by coupling of two SO₂ at a vanadium center:

 $Cp*_2V(\eta^2-SO_2)$ had the lowest ν_{SO} bands ever observed for η^2-SO_2 (1076, 819 cm⁻¹), indicating activation of SO_2 via metal-ligand back-bonding, and indeed reacted further with SO₂ to yield the less soluble S₂O₄ complex.²⁹ The staggered coordination mode of the dithionite is unprecedented, and whether it is a kinetic product formed in the coupling of SO₂ ligands or the preferred coordination mode for dithionite is unknown. A similarly bonded disulfite ligand, O₂S-SO₃²⁻, was prepared from an Fe macrocycle and HSO₃⁻, possibly via 2HSO₃⁻ \leftrightarrow S₂O₅²⁻ + H₂O.^{8g} To complete the series of S₂O_x²⁻ formations, a redox/disproportionation reaction of SO₂ with Cr(C₆H₆)₂ gave [(C₆H₆)₂Cr]₂[S₂O₆·2SO₂] containing SO₂-solvated dithionate anion.³⁰

A ruthenium analogue of the above hydrides, Cp*Ru-(CO)₂H, gave yet different reactivity with SO₂, yielding two soluble, crystallographically-characterized complexes, Cp*Ru(CO)₂(SO₃H) (25%) and dinuclear [Cp*Ru(CO)₂]₂(μ -S₂O₃) (37%), plus unidentified species, in a variety of solvents.³¹ In this case, SO₃H and

bridging thiosulfate ligands are created by oxygen transfer. The source of the third oxygen in these ligands was confirmed to be SO_2 by $S^{18}O_2$ labeling and IR (Table 1). As for the Mo/W systems, varying the SO₂:hydride ratio of eq 11 did not change product ratios, indicating thermodynamic control. A mechanism is difficult to propose, but it is noteworthy that polar solvents and bases such as NEt₃ accelerated the reaction, a common feature of SO₂ disproportionations discussed later.

 SO_3R ligands³² are commonly formed by SO_2 insertion into M-OR^{32c} or RO-attack on M-SO₂.^{14a} Usually they are S-bound,^{32b} but an O-bound form has recently been shown in Ir(CO)[OSO₂Me](SO₂)(PPh₃)₂.²⁵ SO₃H ligands^{25,32c,33} are rare (Table 1) and prior to our work had not been made directly from SO_2 (CpFe(CO)₂- (SO_3H) was synthesized by hydrolysis of the SO_3R species^{32a}). X-ray^{28a,31} and IR³¹ studies showed attachment of the proton to oxygen $(\nu(OH)/\nu(^{18}OH) = 2460/$ 2450) in $Cp*Ru(CO)_2(SO_3H)$, which can readily be deprotonated by Et_3N . Theoretical work showed that the bisulfite isomers HSO₃- and SO₃H- are comparable in energy, with the latter containing a long S-OH bond (1.716 Å) suggesting assembly from weakly interacting SO₂ and OH^{-.34} Insertion of SO₂ into M-OH to form M-SO₃H has indeed been found for Rh^{32c} and Ir.²⁵ The experimental S-OH distance in $Cp*Ru(CO)_2(SO_3H)$, 1.559 Å, is much shorter than the theoretical, indicating that metal binding may stabilize SO_3H . To complete the SO_xH series, O-bonded *bisulfate* is formed in Fe-

(29) Burns, C. J.; Kubas, G. J. Manuscript in preparation.

(30) Elschenbroich, C.; Gondrum, R.; Massa, W. Angew. Chem., Int. Ed. Engl. 1985, 24, 967.

(31) (a) Kubat-Martin, K. A.; Kubas, G. J.; Ryan, R. R. Organometallics
1988, 7, 1657. (b) Kubat-Martin, K. A.; Kubas, G. J.; Ryan, R. R. Ibid.
1989, 8, 1910.

(32) Examples: (a) Poffenberger, C. A.; Wojcicki, A. Inorg. Chem. 1980, 19, 3795.
(b) Ghilardi, C. A.; Midollini, S.; Sacconi, L. Inorg. Chem. 1977, 16, 2377.
(c) Green, L. M.; Meek, D. W. Organometallics 1989, 8, 659.
(33) (a) Johnson, D. A.; Jeter, D. Y.; Cordes, A. W. Acta Crystallogr.

(34) Stromberg, A.; Gropen, O.; Wahlgren, U.; Lindqvist, O. Inorg. Chem. 1983, 22, 1129.

^{(26) (}a) Oae, S. Organic Chemistry of Sulfur; Plenum Press: New York, 1977; Chapter 11. (b) Stirling, C. J. M. Int. J. Sulfur Chem. B 1971, 277.

^{(27) (}a) Eller, P. G.; Kubas, G. J. U.S. Patent 4,152,118 (May 1, 1979).
(b) Cook, R. L.; MacDuff, R. C.; Sammells, A. F. Anal. Chim. Acta 1989, 217, 101; 226, 153.

⁽²⁸⁾ See ref 23. Non structurally characterized metal-dithionites: (a) Poffenberger, C. A.; Tennent, N. H.; Wojcicki, A. J. Organomet. Chem. 1980, 191, 107. (b) Reich-Rohrwig, P.; Clark, A. C.; Downs, R. L.; Wojcicki, A. Ibid. 1978, 145, 57. (c) Bitterwolf, T. E. Ibid. 1987, 320, 121.

^{(33) (}a) Johnson, D. A.; Jeter, D. Y.; Cordes, A. W. Acta Crystallogr.
1987, C43, 2001. (b) Allen, L. R.; Jeter, D. Y.; Cordes, A. W.; Durham,
B. Inorg. Chem. 1988, 27, 3880. (c) Condren, S. M.; Cordes, A. W.; Durham,
B. Acta Crystallogr. 1990, C46, 889.

Disproportionation of SO_2

 $(TPP)(OSO_3H)$ from Fe(TPP) and SO₂ (TPP = tetraphenylporphyrinate), where trace O_2 is the oxidant.³⁵

M-SO₂H may often be unobserved intermediates in SO₂ reduction. Prior to our work, reaction of Cp₂Fe with CF_3SO_3H in liquid SO_2 to give Cp_2Fe^+ , H_2O , and S_8 had been proposed to occur via insertion of SO_2 into Cp₂Fe-H⁺ followed by loss of unstable "HSO₂ radical".³⁶ A well-studied hydride which we also believe activates SO₂ by insertion is $Os_3(CO)_{10}(\mu-H)_2$. The latter forms an SO₂-bridged complex, $Os_3(CO)_{10}(\mu-H)_2(\mu-SO_2)$, as the first observable product, which gradually converts in solution to an unisolated species believed to be Os₃- $(CO)_{10}(\mu-H)(SO_2H)$ based on NMR and isolation of the salt $[Bz_3NH][Os_3(CO)_{10}(\mu-H)(\mu-SO_2)]$ on addition of Bz₃N.³⁷ Reduction of SO₂ to H₂O and unidentified Os-CO species then occurs after several days in liquid SO_2 .

An iridium polyhydride reduces SO₂ stepwise, initially to an unstable μ -SO complex and then to μ -S, which can later be protonated off as $H_2S^{:38}$

This is a rare example of complete reduction of SO_2 to sulfide and H₂O by hydrides.

Oxygen-Transfer Reactions of SO₂ on Metal Centers

Prior to our work, oxygen transfer to or from SO₂ had been rarely observed under mild conditions. Bennett found that reaction of SO₂ and (Me₃Si)₂NH gave (Me₃-Si)₂O, Me₃SiNSO, and NH₄[Me₃SiOSO₂],³⁹ while Mingos demonstrated that SO_2 is able to function as both an oxygen donor and receptor on metal complexes:^{8c,40}

$$Pt(\eta^{2}-CS_{2})(PPh_{3})_{2} + 2SO_{2} \xrightarrow{\text{benzene}} Pt(CS_{2}O)(PPh_{3})_{2} + S + SO_{3} (13)$$

 SO_2 addition to $Pt(N_2O_2)(PPh_3)_2$ gave a product proposed on the basis of IR ¹⁵N-labeling studies to have the cyclic insertion-type structure shown below, which decomposed on heating to a sulfito complex.^{8c}

At about the same time, we noted that $Ru(CO)_2(\eta^2$ -SO₄)(PPh₃)₂, PPh₃S, and unidentified Ru species slowly formed from $Ru(CO)_2(\eta^2-SO_2)(PPh_3)_2$ in toluene con-

(40) Ghatak, I.; Mingos, D. M. P.; Hursthouse, M. B.; Raithby, P. R. Transition Met. Chem. (London) 1976, 1, 119.

taining excess SO_2 even with careful exclusion of O_2 .⁴¹ The structure at -60 °C revealed a second SO₂ weakly bonded to the terminal O of SO_2 .

$$Ru \stackrel{O}{\underset{S}{\overset{\circ}{\underset{O}}}} \frac{[PPh_3]}{Ru \stackrel{O}{\underset{O}{\overset{O}}}} Ru \stackrel{O}{\underset{O}{\overset{O}{\overset{O}}}} s \stackrel{O}{\underset{O}{\overset{O}{\overset{O}}}} + PPh_3S$$
(15)

This suggested that self-association of SO₂ molecules was the first step in an O-transfer process to give SO_4 plus sulfur, scavenged by PPh₃ (free or coordinated), an important theme echoed by our later work on SO_2 disproportionation on sulfide complexes.

Several single oxygen-atom transfer reactions are known,⁴² e.g., removal of oxygen from bound SO₂ to give bound SO^{42a} and vice-versa (M = Fe, Ru, Rh, Ir):

$$CpRh(C_{2}H_{4})(SO_{2}) + Si_{2}Cl_{6} \rightarrow CpRh(SO) + (Cl_{3}Si)_{2}O + C_{2}H_{4}$$
(16)

$$M-SO \xrightarrow{[0]}{\rightarrow} M-SO_2 \xrightarrow{2} M-\eta^2-SO_4$$
$$[O] = p-ClC_6H_4CO_3H (17)$$

 $RuCl(NO)(PPh_3)(SO)$ in eq 17 converted all the way to sulfate.^{42d} On M = $[CpRu(PR_3)_2]^+$, SO disproportionated to give MSO₂ and MSSM.^{42c} Many more examples of O transfer and disproportionation-type reactions are emerging, and in a sense all SO₂ bond-breaking reactions can be considered O transfer.

Activation of SO₂ on Metal Clusters To Give Sulfido and Oxo Ligands

Although reactions of SO_2 on metal clusters would be a good model for SO₂ reactions on surfaces,⁴³ little such work has been done.44 While investigating potential catalysts for SO₂ reduction, we found that Cp₂- $Mo_2(CO)_6$ catalyzed SO_2/H_2 reaction (10-100 atm of H₂, 100 °C, toluene) to give primarily S₈ and H₂O. Under 1 atm, reduction was not observed, and the same Mocontaining products resulted with or without H₂. Analysis of the products indicated that CO from Cp₂- $Mo_2(CO)_6$ reduced SO_2 to give CO_2 and sulfido complexes. One early product that disappeared on longer reaction was characterized to be the first homonuclear butterfly cluster of a group 6 metal (Figure 3).⁴⁵ The complex contained the elements of reduced SO_2 , and an overall reaction can be written:

(41) Moody, D. C.; Ryan, R. R. J. Chem. Soc., Chem. Commun. 1980, 1230.

⁽³⁵⁾ Scheidt, W. R.; Lee, Y. J.; Finnegan, M. G. Ibid. 1988, 27, 4725.

 ⁽³⁶⁾ Bitterwolf, T. E.; Ling, A. C. J. Organomet. Chem. 1972, 40, C29.
 (37) (a) Jarvinen, G. D.; Ryan, R. R. Organometallics 1984, 3, 1434.
 (b) Jarvinen, G. D.; Larson, E. M.; Wasserman, H. J.; Burns, C. J.; Ryan, R. R. Acta Crystallogr. 1988, C44, 1701. (c) Jarvinen, G. D.; Kubas, G. J. U. Kubikhed angula

J. Unpublished results. (38) Neher, A.; Lorenz, I.-P. Angew. Chem., Int. Ed. Engl. 1989, 28, 1342.

⁽³⁹⁾ Bennett, D. W.; Spicer, L. D. Inorg. Chem. 1982, 21, 410.

^{(42) (}a) Heyke, O.; Lorenz, I.-P. Phosphorus, Sulfur, Silicon 1992, 71,
(39. (b) Schenk, W. A.; Leissner, J.; Burschka, C. Z. Naturforsch., B
1985, 40b, 1264. (c) Schenk, W. A.; Karl, U.; Horn, M. R.; Mussig, S. Ibid.
1990, 45b, 239. (d) Heyke, O.; Beuter, G.; Lorenz, I.-P. J. Organomet. Chem. 1992, 440, 197.

⁽⁴³⁾ Oxidation to sulfate has been studied: (a) Outka, D. A.; Madix, R. J.; Fisher, G. B.; DiMaggio, C. J. Phys. Chem. 1986, 90, 4051. (b) Burke, M. L.; Madix, R. J. Ibid. 1988, 92, 1974.

⁽⁴⁴⁾ Pd and Pt clusters with a variety of SO₂ geometries have been characterized by Mingos but have shown little reactivity: Burrows, A. D.; Mingos, D. M. P.; Powell, H. R. J. Chem. Soc., Dalton Trans. 1992, 261 and references therein. Mingos, D. M. P.; Oster, P.; Sherman, D. J. J. Organomet. Chem. 1987, 320, 257.

⁽⁴⁵⁾ Jarvinen, G. D.; Ryan, R. R.; Wasserman, H. J.; Kubas, G. J. Unpublished work.

Figure 3. Structure of $Cp_4Mo_4(CO)_2(\mu-S)_2(\mu-O)_2$ (Cp rings on Mo1 and Mo1' omitted). Distances not shown: Mo1-Mo1 = 2.845(2) Å; Mo1–O2 = 2.051(5) Å; Mo1–S1 = 2.364(2) Å; Mo1–C1 = 2.718(8) Å; dihedral angle between wings: 123° .

$$\begin{aligned} & 2\mathrm{Cp}_2\mathrm{Mo}_2(\mathrm{CO})_6 + 2\mathrm{SO}_2 \xrightarrow{} \mathrm{Cp}_4\mathrm{Mo}_4(\mathrm{CO})_2(\mu\text{-}\mathrm{S})_2(\mu\text{-}\mathrm{O})_2 + \\ & 8\mathrm{CO} + 2\mathrm{CO}_2 \ \ (18) \end{aligned}$$

The average Mo oxidation state changed from +1 to +3(and sulfur from +4 to -2), but examination of the Mo environments individually led to assignments of +3 for Mo1 and Mo1', +2 for Mo2, and +4 Mo3. The presence of three different metal oxidation states is rare in homonuclear clusters. More importantly, the structure provides a model for some of the intermediates that have been proposed for metal-catalyzed reduction of SO_2 with CO. SO_2 can be envisioned to coordinate to a metal surface or unsaturated cluster and dissociate into sulfido and oxo ligands (terminal or bridging). The oxo species could then react with nearby M-CO to give CO₂. In the Mo cluster, each oxo is 2.58 Å away from the carbon atom of a semibridging CO. This distance is less than the sum of the van der Waals radii (~ 3.0 Å), suggesting a weak interaction between the CO and oxo ligands.

Recently Shriver⁴⁶ found that cluster-bound SO_2 is reduced by NaPh₂CO to sulfido or SO ligands in $[HFe_3(CO)_9(SO_2)]^-$, where prior acetylation is necessary for reductive cleavage of both oxygens from SO_2 (Figure 4). Both cluster-bound SO and formation of a stable SO complex by oxygen removal from bound SO_2 are rare.³⁸ Reaction with AcCl initially formed unstable $[HFe_3(CO)_9(SO_2Ac)]$, which then was reduced via a complex, multistep mechanism not involving [HFe₃- $(CO)_9S]^-$ or $[Fe_3(CO)_9SO]^{2-}$ as intermediates.

Other examples reiterating the usefulness of SO_2 as a S/O-ligand source include Taube's $Ru-S_2-Ru$ dimer¹⁸ and $[Rh_{17}(S)_2(CO)_{32}]^{3-}$ from reduction of $Rh(CO)_2(acac)$ and SO_2 with H_2/CO (300 atm, 160 °C).⁴⁷ Reactions of SO_2 with the dithiocarbamate $W(CO)_3(LL)_2$ (LL = S_2 - CNR_2) formed a mixture of $WO(S_2)(LL)_2$, $WS(S_2)(LL)_2$, and $W_2O_2S_2(LL)_2$, and with $MoCl(LL)_3$ reduced with Zn/Hg gave $Mo(SOCl_2)(LL)_3$, claimed to be the first SOCl₂ complex.⁴⁸ Noncluster building examples include Lorenz's reaction of SO_2 with trans- $Mo(N_2)_2(dppe)_2$ to give trans-Mo(=S)(=O)(dppe)₂ containing lattice H₂- SO_4 (dppe = $Ph_2PC_2H_4PPh_2$).⁴⁹ It was speculated that

Figure 4. Structure and reactions of $[HFe_3(CO)_9(SO_2)]^-$ (three CO ligands on each iron; Ac = acetyl).

 SO_2 disproportionated to SO_3 (the source of H_2SO_4) and SO, which oxidatively added to a 14e⁻ Mo(dppe)₂ fragment. However, the mechanism and origin of H₂- SO_4 were not well defined. A related system is MoH_4 - $(dppe)_2$ protonated with HBF₄ in THF that reacted with SO₂ to form trans-[MoF(O)(dppe)₂]⁺ and trans- $[MoF(S)(dppe)_2]^{+.50}$ These are rare examples of total cleavage of SO_2 to separate O/S ligands. We recently found novel removal of the oxygens of SO₂ at 25 °C by $U(OR)_3$ to give $(OR)_3U-S-U(OR)_3$ as the major uranium product.^{51a} The fate of the oxygens is as yet unknown. Conversely, W(CO)(phenanthroline)(SPh)₂(η^2 -SO₂) spontaneously converts in solution to cis-W(=O)2- $(phenanthroline)(SPh)_2$ and S_8 .^{51b}

Catalytic Reduction and Disproportionation-Type Reactions of SO₂

Aside from commonly used limestone scrubbing, SO₂ abatement schemes can involve either oxidation to H_2 - SO_4 or reduction to sulfur, which is of greater research interest because methodology is less established and S_8 is often a more desirable product.⁵² Numerous papers and patents have appeared on this subject, and a variety of reducing agents have been used including H_2 , CH_4 , and CO. An early concept for SO_2 removal from combustion gases was to reduce it with CO already present, but formation of toxic COS was a problem.⁵³ However, natural gas is currently employed to reduce SO₂ scrubbed from the flue gas of certain coal-fired utilities:

$$CH_4 + SO_2 \rightarrow S_8 + H_2S + CO_2 + H_2O \qquad (19)$$

Vanadium-alumina⁵⁴ or metal sulfide⁵² catalysts at 620-720 K can be used to produce sulfur and/or H_2S , which is then reacted with further SO_2 to give S_8 as the final product.

We chose to study SO_2 reduction by H_2 , initially using very active heterogeneous catalysts such as 0.5% Ru/ alumina under mild conditions (150-300 °C) to minimize formation of byproducts such as H₂S.⁵⁵ Typical experiments involved flask-heating of catalyst pellets and SO_2/H_2 in 1:2 ratio at ~1 atm. The only products obtained were S_8 and H_2O . Turnovers/h ranged up to 65 at 300 °C with no catalyst poisoning. Mixtures of

⁽⁴⁶⁾ Karet, G. B.; Stern, C. L.; Norton, D. M.; Shriver, D. F. J. Am. Chem. Soc. 1993, 115, 9979.

⁽⁴⁷⁾ Vidal, J. L.; Fiato, R. A.; Cosby, L. A.; Pruett, R. L. Inorg. Chem. 1978, 17, 2574.

^{(48) (}a) Broomhead, J. A.; Enemark, J. H.; Hammer, B.; Ortega, R. B.; Pienkowski, W. Aust. J. Chem. 1987, 40, 381. (b) Broomhead, J. A.; Gill, N. S.; Hammer, B. C.; Sterns, M. J. Chem. Soc., Chem. Commun. 1982, 1234

⁽⁴⁹⁾ Lorenz, I.-P.; Walter, G.; Hiller, W. Chem. Ber. 1990, 123, 979.

⁽⁵⁰⁾ Ellis, R.; Henderson, R. A.; Hills, A.; Hughes, D. L. J. Organomet. Chem. 1987, 333, C6.

^{(51) (}a) Avens, L. R.; Barnhart, D. M.; Burns, C. J.; McKee, S. D.; Smith, W. H. Inorg. Chem., in press. (b) Lang, R. F., Ju, T. D.; Hoff, C. D.; Bryan, J. C.; Kubas, G. J. Manuscript in preparation.

 ⁽⁵²⁾ Mulligan, D. J.; Berk, D. Ind. Eng. Chem. Res. 1989, 28, 926.
 (53) Querido, R.; Short, W. L. Ind. Eng. Chem. Process Des. Dev. 1973, 12, 10.

⁽⁵⁴⁾ Zuckerman, J. J., Ed. Inorganic Reactions and Methods: The Formation of Bonds to Hydrogen (Part 1), Vol. 1; VCH Publishers, Inc.: New York, 1986; p 215.

⁽⁵⁵⁾ Moody, D. C.; Ryan, R. R.; Salazar, K. V. J. Catal. 1981, 70, 221.

Figure 5. Reactions relating to catalytic SO₂ hydrogenation and disproportionation on Mo-S complexes. The S8 produced from SO₂ reduction in the top reaction becomes incorporated into the clusters to form $[Cp*MoS_3]_n$ (ref 58).

 SO_2 and NO were simultaneously reduced to N_2 , S_8 , H_2O_1 , and a trace of N_2O_2 .

The next goal was to establish homogeneous catalytic reduction. As mentioned above, Cp₂Mo₂(CO)₆ catalyzed hydrogenation but decomposed. Clearly the major obstacle is sulfur poisoning, so we looked into sulfido complexes as catalysts. [CpMoS(SH)]₂ (Figure 5, top right) stood out because it catalyzed S_8 and H_2 to H₂S and contained reducing SH ligands uniquely regenerable from $H_{2.56}$ Hydrogenation of SO_2 to S_8 and H₂O was found to occur cleanly at 25 °C in a closed flask containing a solution of [CpMoS(SH)]₂.⁵⁷ Optimization of conditions, including use of more soluble Cp* analogues in 1:1 PhCl-BuOH solvent with 0.1% Bu₃N promoter and \sim 3 atm of H₂ gave 350 turnovers/h at 75 °C. A 10-fold rate increase in the presence of weak bases such as alcohols and amines was a critical clue in postulating a mechanism for the catalysis, which initially was believed to include the top reactions in Figure 5, plus reduction of SO₂ by H₂S formed from H₂ reaction with $[Cp*MoS_3]_n^{58}$ and/or S_8 product. It is important that the system be totally regenerable, i.e., that there be no dead-end species. Indeed $Cp_2Mo_2S_4^{59}$ formed from SO₂-[Cp*MoS(SH)]₂ reaction (Figure 5, top) was an equally good catalyst.

Further research led to fascinating new chemistry where SO_2 was found to disproportionate on the clusters to S_8 and SO_3 , forming the basis for new catalytic pathways. We found that reaction of SO_2 with $Cp*_2$ -Mo₂S₄ initially yielded an adduct containing SO₂ weakly bound to μ -S (Figure 5, S-SO₂ = 2.60 Å).⁶⁰ Reversible Lewis acid binding of SO₂ to sulfur ligands is common,⁶¹ but in this case further reaction with SO₂ unexpectedly occurred in solution to quantitatively give sulfur and $Cp*_2Mo_2(\mu-S)(\mu-S_2)(\mu-SSO_3)$ containing an SO_3 fragment bound to the μ -S (Figure 5). ¹⁸O labeling

(56) Rakowski DuBois, M. Chem. Rev. 1989, 89, 1.

Ziegler, M. L. Organometallics 1982, 1, 1107. (b) Brunner, H.; Kauermann, H.; Meier, W.; Wachter, J. J. Organomet. Chem. 1984, 263, 183.

(60) Kubas, G. J.; Ryan, R. R.; Kubat-Martin, K. A. J. Am. Chem. Soc. 1989, 111, 7823

(61) See refs 23, 27, 68, and 69. A cooperative bonding effect between metal-bonded and S-bonded SO2 has been proposed: Shaver, A.; Plouffe, P.-Y. Inorg. Chem. 1992, 31, 1823.

Figure 6. Structure of $2Cp*_2Cr_2(\mu-S)(\mu-\eta^2-S_2)(\mu-\eta^1-SS\cdot SO_2)\cdot 2SO_2$, showing cyclic aggregation of SO₂. Reprinted with permission from ref 63. Copyright 1992 American Chemical Society.

established that the SO_3 is formed from SO_2 by oxygen transfer. The SSO_3 can be regarded as a reactive thiosulfate ligand (S-S = 2.17 Å) and is readily hydrogenated at 25-75 °C to regenerate Cp*2M02S4 (Figure 5). The relationship to the catalytic hydrogenation of SO₂ became apparent: rates of the disproportionation and catalytic reactions were similar. and both processes were promoted by Lewis bases nearly identically. A new mechanism for catalysis based on Figure 5 was proposed, where the rate-determining step is SO_2 disproportionation to sulfur and S-bound SO_{3} .

We then found that $Cp*_2Cr_2S_5$, with both η^1 -S₂ and η^2 -S₂ ligands,⁶² is more active than the Mo sulfides in cleaving SO₂.⁶³ It initially bonded SO₂ at the η^1 -S₂, and crystallography revealed a crucial finding: the oxygens of each bound SO₂ interacted further with the sulfurs of two associated SO₂ molecules to form a ring (Figure 6). In solution disproportionation then occurred to $Cp*_2Cr_2S_4$ ·SO₃ with one less core sulfur, isostructural with the Mo analogue. The structure of the SO₂ adduct suggested an oxygen-transfer mechanism initiated by self-aggregation of SO2 via weak Lewis acid-base interactions induced by electron donation from sulfide (Figure 7). In support of this mechanism, reaction of ³⁴S-labeled $Cp*_2Cr_2S_5$ with SO_2 produced labeled S_8 and unlabeled SO_3 . The role of base promoters (B) is perhaps to stabilize transients, i.e., SO₃ and unstable S_2O^{64} (bases also catalyze $SOCl_2-SO_2$ exchange¹). SO_2 itself is slightly associated in liquid and gas,¹ although an X-ray⁶⁵ of the solid showed no close interactions. Self-exchange of oxygens occurs within minutes, possibly via a cyclic intermediate:¹

Raman studies of SO_2 at high pressure indicated formation of a cyclic trimer at 25 kbar which produced free sulfur on photolysis.⁶⁶ The bimolecular dispro-

 (64) Pandey, K. K. Prog. Inorg. Chem. 1992, 40, 445.
 (65) Post, B.; Schwartz, R. S.; Fankuchen, I. Acta Crystallogr. 1952, 5, 372.

(66) Swanson, B. I.; Babcock, L. M.; Schiferl, D.; Moody, C. C.; Mills, R. L.; Ryan, R. R. Chem. Phys. Lett. 1982, 91, 393.

⁽⁵⁷⁾ Kubas, G. J.; Ryan, R. R. J. Am. Chem. Soc. 1985, 107, 6138. (58) An insoluble species that incorporates the S₈ produced from SO₂ reduction by [CpMoS(SH)]₂ and reacts with H₂ to re-form [CpMoS-(SH)]₂: (a) Schunn, R. A.; Fritchie, C. J., Jr.; Prewitt, C. T. Inorg. Chem. 1966, 5, 892. (b) Rakowski DuBois, M.; DuBois, D. L.; VanDerveer, M. C.; Haltiwanger, R. C. *Ibid.* 1981, 20, 3064.
 (59) (a) Brunner, H.; Meier, W.; Wachter, J.; Guggolz, E.; Zahn, T.;

^{(62) (}a) Brunner, H.; Wachter, J.; Guggolz, E.; Ziegler, M. L. J. Am. Chem. Soc. 1982, 104, 1765. (b) Wachter, J.; Brunner, H.; Meier, W. Inorg. Synth. 1990, 27, 69.
(63) Toupadakis, A.; Kubas, G. J.; Burns, C. J. Inorg. Chem. 1992, 31, 2010.

^{3810.}

Figure 7. Possible mechanism for the disproportionation of SO_2 to sulfur and SO_3 on $Cp^*_2Cr_2(\mu-S)(\mu-\eta^2-S_2)(\mu-\eta^1-SS\cdotSO_2)$, where B is a Lewis base such as Et₃N. S* indicates positions of ³⁴S in the labeling experiment (metal-bound core sulfides also contained ³⁴S). The $\mu-\eta^2-S_2$ ligand is not shown for clarity. Reprinted with permission from ref 63. Copyright 1992 American Chemical Society.

portionation $2SO_2 \rightarrow SO_3 + SO$ is thermodynamically unfavorable⁶³ and complicated by the instability of SO⁶⁴ and the strong oxidizing ability of SO₃. However, the latter can be stabilized by binding to bases, e.g., sulfide to give thiosulfate, and the resulting binding energy can then make the overall process thermodynamically favorable. The fact that SO and S_2O quickly go to S_8 (and SO_2) gives an easy kinetic pathway for attrition of SO_2 to sulfur. Thus, disproportionation may be a disguised mechanistic feature of many SO₂ reactions, and even apparent reduction of $S^{IV}O_2$ may actually go via SVIO₃-containing intermediates from oxygen transfer between SO_2 (as in eq 11). It is important to note that the disproportionation is directly facilitated by the sulfide ligand rather than the spectating metal, and that sulfate was not formed as in the metal-bound case (eq 15).

Facile disproportionation of SO_2 has potential for use in SO_2 scavenging. A product such as $Cp_{*2}^*-Mo_2S_4$ ·SO₃ can be considered to be a source of stabilized SO_3 (nucleophiles such as amines strip it off under mild conditions⁶⁰). It is conceivable that catalytic cycles can be designed where SO_3 species are directly utilized to form organosulfonates or H_2SO_4 . Indeed rapid hydrosulfination catalyzed by $[Pd(dppp)(MeCN)_2]^{2+}$ at 80 °C has recently been found,⁶⁷ analogous to hydroformylation:

$$\begin{array}{l} \text{RCH} = \text{CH}_2 + \text{SO}_2 + \text{H}_2 \rightarrow [\text{R'SO}_2\text{H}] \rightarrow \text{R'SO}_2\text{SR'} + \\ \text{R'SO}_3\text{H} + \text{H}_2\text{O} \quad (20) \end{array}$$

Unstable sulfinic acids²⁶ formed via H_2 reaction with Pd-SO₂R' were postulated as intermediates, but overall, many pathways to useful compounds may be possible.

A recent flurry of activity has occurred in the area of SO_2 disproportionation/oxygen transfer. Coucouvanis⁶⁸ showed even more diverse reactivity with a Mo oxo-sulfido cluster leading to formation of crystallographically-characterized sulfite, thiosulfate, or sulfate species depending on temperature and time:

$$\begin{array}{c}
 & 0 \\
 & M_{0} \\
 & S \\
 & M_{0} \\
 & S \\$$

The initial step was believed to be addition of SO₂ across the terminal Mo=S bond to give an unisolated η^2 thiosulfite complex, followed by further multistep reactions with SO₂. A related Mo oxo-sulfido dimer also produced sulfate ligands from SO₂ in the absence of oxygen in DMF at 100 °C, including an unprecedented μ_4 -SO₄ linking two [(SO₄)Mo(O)(μ -S)₂Mo(O)-(SO₄)]²⁻ subunits. In another remarkable variation on the same theme, *anionic* sulfate has been formed from reaction of O₂ with *ligand-bound* SO₂ in a nickel(II)dithiolate.⁶⁹ Ligands also may participate in exposure of MnX₂(OPPh₃)_n(SO₂) (X = Cl, Br, NCS) to moist air to give H₂SO₄, isolated as (PPh₃O)(PPh₃OH)(HSO₄).⁷⁰

Epilogue

There appear to be endless possibilities for SO₂ activation at both metal and ligand sites, both with and without oxygen present, to give either free or coordinated sulfur and oxysulfur species. SO₂ disproportionation to primarily thiosulfate-containing species is ubiquitous and may be the central step in much of known SO₂ reactivity, including catalytic hydrogenation or even reduction by methane on sulfide catalysts such as Re_2S_7 and MoS_2 .^{52,71} Indeed FeS is known to react with SO_2 in water to produce thiosulfate ion,⁷² perhaps analogously to the Cp*₂Mo₂S₄ system. Even wellestablished but mechanistically undefined processes not involving metals, such as Claus reaction of SO₂ and H_2S , may initially involve O transfer among SO_2 molecules to form unstable intermediates such as H₂- SSO_3 . A major question is, How susceptible are SO_2 and other amphoteric molecules such as NO_x to disproportionation processes? Further study of the conditions which promote this reactivity may lead to new strategies for chemical synthesis and abatement technology.

The author is deeply grateful to his colleagues at Los Alamos, especially to Dr. Robert R. Ryan for providing inspiration and expertise that made possible a comprehensive study of SO_2 activation. The research was funded by the U.S. Department of Energy, Division of Chemical Sciences, Office of Basic Energy Sciences.

⁽⁶⁷⁾ Keim, W.; Herwig, J. Chem. Soc., Chem. Commun. 1993, 1592.

 ⁽⁶⁸⁾ Kim, C. G.; Coucouvanis, D. Inorg. Chem. 1993, 32, 1881, 2232.
 (69) Darensbourg, M. Y.; Tuntulani, T.; Reibenspies, J. H. Ibid. 1994, 33, 611.

^{(70) (}a) Al-Farhan, K.; Beagley, B.; El-Sayrafi, O.; Gott, G. A.; McAuliffe, C. A.; MacRory, P. P.; Pritchard, R. G. J. Chem. Soc., Dalton Trans. 1990, 1243. (b) El-Sayrafi, O.; Godfrey, S. M.; McAuliffe, C. A.; Matear, P. P.; Pritchard, R. G. Inorg. Chim. Acta 1993, 209, 41.

 ⁽⁷¹⁾ Slaugh, L. H. Inorg. Chem. 1964, 3, 920.
 (72) Thom, G. C.; Waters, P. F.; Hadermann, A. F. Ibid. 1978, 17, 1693.